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SOME BASIC LAWS OF ISOTROPIC TURBULENT FLOW*

By L, 6, Loiltsianskil
SUMMARY

An investigation ie made of the diffusionm of artifi-
clally produced turbulence behind screens or other turbdu—
lence producers, After defining the fundamental assumptlions
underlying the statistical turbulence theory more accurately,
the author proposes a method that permits investigation of
the diffusion of turbulent disturbances of finite scale in
place of the "point source" disturbances considersd dy Von
Karman“ The method is based on the authorts concept of
Hidpturbance moment® as a certaln theoretically well—founded
measure 0f turbulent disturbances, Incidentally, with the
object of familiarizing the reader with the fundementale of
the new theory, the authoer gives-a presentation of the funda—
..mentale of the theory in e form that 1s consldered somewhat
Bilmpler than that given 1in exlsting papers,

INTRODUCT ION

T

Inrrecent yeare, due chiefly to the investlgations of
Teylor, .(reference 1) and Von Karman (reference 2), further
progrqqi hHas been made ind the turbulense theory, The new
1deas 4x€ bgqed essentially, on the statistical turbulence
theory preeqnted several decades ago by the great Soviet
physiocist ﬂriedmann whose premature death occurred in 192F,
end by Keller (reference 3),

The principal difference between the new method and
previous statiscal methods lies in the introduction, to-
gether with the ueual correlation momente of the veloclty
at a given point 'of the flow, of speclial "assoclation mo—-
ments" (Friedmenn's terminology) between the velocity com—
ponents at two different points .of the flow gt -corresponding
ingtants of time, :.Thig 1dea hes proved iteelf very fruitful

2 o

*Report No, 440, of the Gentrel Aero—Hydrodynemical
Ingtitute, Moscow, 1939, a5
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and has enabled Taylor to develop the theory of the dissipa~
tion of turbulent disturdances behind screens and enadbled Von
Karmédn to give a general equation for turbulence propagation.

The concept of associlation moment makes 1t possible to
determine such an important magnitude as the "scale of the
turbulence," a characteristic of turbulence of equal impor—
tance with the other characterlstics; namely, the amplitudes
and frequencies of the fluctuations, Modern physical experi-—
ments, such as are conducted in aerodynamics, permit measuring
the assoclation moments and thus check the resultea of the
theory. JFrom the practical point of view new theories are
.important bhecause they replace semiempirical theories, they
throw light on the phyeical structure of turbulent motion,
and mlso because they provide a firm basis for the investiga—
tion of artificlal flows in eerodynamic wind tunnels,;- open
channels, and so forth, A knowledge of the turbulence~charac—
teristics of these flows permits a more accurate est{imate of
the scale effects of the phenomena and better application of
the model ,teste to full—scale de:ign.
. A further development of the problem of the diffusion of
artificially produced turbulence behind screens or other tur—
bulence—~producing devices is presented in this paper, With
the fundamental assumptions of the theory more accurately de—
fined a method is proposed that permits the investigation of
the diffuslon of turbulent disturbances of finite scale in
Place of the point source disturbances considered by Von
Karman. The method is based on the author's concept of "mo—
ment of ‘disturbance” as a certain theoretically well—founded
measure ef ‘tutrbulent disturbances, Incidentally.'with the
object of familiarizing the reader with the fundamentals of
the new theory, the latter is-presented in‘a form that is con—
sidered simpler than that given in existing litprgtqre.

1. HOMOGENEOUS AND Isomnorrc TURBULENCE - ASSOGIATION
MOMENTS AND GORRELATION TENSOR — TWO FIRST GORRILATION
FUNCTIONS FOR MOHENTS OF THE SEQOND’ ORDER |

Visuallize a homogenesus turbulent flow, that is, a flow
at a given ingtant the average charactéristice of which are
the same at different pointe, Take any two points in the flow
M and M' and denote their relative radius vector iﬁ‘ by
and its projéctions on the coordinats’axes by £,, g, s
The flow velocities at polnts M and M'" at the same instant
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of time 't are denoted- by Y..and y!'..andr thelr projec—

"tione oh thé aXes by, v4i,  and " vi'!, - The average:magnitudes:
RS : "°1,,,’-71;3_" e S (1,1)

are called, following Friedmann and Keller, "association
moments of the second order.," L These nine magnltudes con-

"gtitutoc a tensor of ‘the second rank ¢ called the tensor

of the assoclation momebt, With regard ‘to 'the averaging

the usual averaging wilth respect to time of:‘the turbulence
theory is assumed, Use 1s also made of the genarally assyaned
averaging quantities.

o8 os '
. (3) o = o \
(2) $w=ﬁ

b ‘-' - [
P

Equations (%) and (4) are applicable, as 1is known,” for the
conditicn that the avarage functions may be considered as
constant (or slightly vnrying) functions in the averagling
irterval,

The tensor - ®..in the general case of a homogeneous
flow dopends only on the relative position of the points M
and M', that 1s, on the vector r and on the time, A par-
ticular case 1s where the assoclation moment tensor 1s a
function ;of the time and .of the distance...r Dbetween -the
points. M., and M! Dut nat of their relativa poaition in
space, The turbulent flow in which the assoclation moment
tensor at & given lnstant does not depend on the ‘direction
in space of the line connecting the two points,” dbut only on
the distance between them, is called an 1§£i_gﬂ_§ turbulent
flow, -It should be particularly noted ‘that the broperty of
isotropy rofers to the tensor as a whole as a physical magni-
tude and not to its individual components, .which depend on

. the relativo posit#on of: the line MM!* aﬂd the cgordinate

axes,

The general forn _of the- aaaoctation ‘moment tensor'in a
homogeneous, isotropic flow is establishod by means of the
syothetic (phyaical) definition of the tensor, By the’
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1- '

_definition of isotropy the components of the tensor @

"in the system of coordindtes Minbd,- aesociated with the
point M'! (axis M1 4s.directed along - MM!, the axes Mn
and- Mb perpendicular to it), 4o not depend on the direc—~
tion of these axes in space but only on the time and the
distance r Dbetwecen the points M .apd M'!, These compo—
nents are denoted by:

(1) The association moment between the 1ong1tudinal
componants of the veloclity along the vector MM! (with unit

vector | = %) by

Fr, t) = v,v,! (1,2)

(2) Tho ecsocletlion moment between the velocity
components transverse to MM! by

G (r, t) = vyvp!t = vyvy! (1,3)

(3) The assocletion moments between one longitudinal
and one transverse veloeclty component by

s (r, t) = 4 !

s

t
"J’n L v.tvb

5, (r, t) = vpvyt .= wyv,t . a

These fensor—defining magnltudes may be readily ex—
preased in ‘terms-of the Cartesian compdnents of the ténsor

5 = Vvt

r (r, t) = v1v1'= (v l) (v' 1) = vi’livJ'IJ':QiJlitJ ﬁ_

G (r, t) = vnv"n!= (v _1_1_) (vt n)= vinivd'nd = ¢iJn1nJ >-(1,4)

s (r't).=. ¢r_ 1 nJ. 'sl (r

1501 '

1.;)_= Qidnilj__ )
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where v 1 denotes-the scalar productj; 1,, By ‘are the

proJectiona of the unit vectors 1 and n, that is, the
direction cosines of the vector MM! and any ardbitrary
vector perpendlicular to it, The summation sign 1s omitted
‘for repeated indices, :

By the definjtlion of isotropy the moments TF, G, §, and
S8, should nmot depend on the direction of MM! and the axes
perpendicurar to it, that 1s, on the magnitudes 14 and nj.

The ‘deperndernce of the tensor @ on the unit ‘vector ) and
the scalars r and t should be of the general form

®=4 (r,t) 11 -+ B (r,t) I (1,5)

where & (r,t) snd B (r,t) are as yet undetermined functions
11 1s the symhol for the dyed constructed from the vector 1
and I 1s the upit tensor, Analytically the result is:

vt -

' 14
.?}A ) f,(rft)_liid+ B (r,t) Ii?'_lid ={: Lo} (1,r1)

Hence, subatituting from (1,F!') in (1,4) while meking use of
the known proPertieH ‘of, direction coaines gtves.

T"(r‘,-t)_,"-& (1'...1-"-)., 1;11:.1111‘1"' B (r t) Iij‘i‘d = A + B
G (r,t)==ﬁ (r,t) 14ljngng+ B (r,t) Iyynynj = B
rn o8 (r,8) = A (r,¢) 131 4ny+ B (r,t) Iyylyny = O

§; (r,t) = & (r,t) '11111411_..1.,!:3 ‘(:j.t) Iggngty =0

The pquating to .2ero of the components vlvn . vlvb and
o I L e

other n0nd1agonal components -shows, tth the éxes Minb- are
the_anncipal axeq of the tensor Qw coquequently n

DT aeweoe, BEe L

w8

1+
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and the final expresslion for the temsor ¢ will be

® = (F - G) 11 + GI

(1,6
gy = (F - 6) 1515 + 61y /6

In what follows the functions F(r,t) and G (r,t) ere
denoted as the firet and second moment functions,*

FNoting.that in the case of homogeneous isotroplc turdu—
lence '

vla = vsﬁ = vaa = vlls = vBIE = 73'2 = v

Yon Kérmén, in place of the assoclation moment temsor @,
introduces the correlation tensor

.-

vtvd' vaJ'

[vay15 ve

Together with Von Kerman the two correlation functions are
introduced:

(1,7)

= 1 -
B—:—E¢. RiJ

f (r,t) = Eiéfil ‘e (r,t)-===-(:’-(-§iﬁ-2 (1,8)

va ve

80 that, makKing use 'of the evident relatiom 1y = ﬁ{/r-

R = rr + gl
r®
or ' > (109)
. f—g
L] - 1
Incidentally it should be noted that vivy = O for
1’4 J as r approaches zero in the e;pfesaions for S or
S§,. Thils 1g not surprising since the averdge velocities

*The reader is reminded that these functions have a slmple
physical m2anihg; namely, the assoclation moments between two
longitudinal or two transverse veloclty components with respect
to the line connecting the polnts,
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in a homergeneoug turbulence are everywhere..the game and-there
ig'no. momentum- transport, The friction i1s.then also evidently
equal to_;ero,

" . 3
[

The unknowi oorreIatlon functiona: f and g are defined
by a relation based on the equation of oontinuity. )

2, ASSOGIATION HOMINTS OT THE THIRD OBDEB - ASSOGIATION
MOMENT TENSOE or TEE THIRD BANI AND ITS HOMENT FUNGTIOHS—

-« +CORRELATION PTENSOR AND ITS CORRECTION FUNCTIONS'

In the Friedmann and Keller theory the association mo-
ments of ‘th§third-order were -not considered., It was assumed
that these moments were small and that they ecould be neglected,
Yon Kdrmdn at first neglected them and only after the criticism
of Taylor dld he give up this simplification, Sinece the 1n-
vestligation of the problem of isotrople turbulent motion 1s to
be made wlth a minimum of gquantitative restricting assumptions
the theory of assoclation momends of the third order is pre. -
cented by the same méthod of presentation ae in the previous
saction'

E By association moments of the third order or simply
third moments ara meant average magnitudes of the type:s

vivdvkl and vilevkl
N . . L . LR

where the notation remaina the esame, ; o .;t'“_“

It is feadily seen ‘that the association momentn contain—
ing two components ‘at point M' and one‘'at point M may be
expressed in terms of the amapsociation moments containing two
components at point M and one at point M, Interchanging
.the places . of the pointg - M 'and M! "ig equivalent to re—
versing the direction of the vector MM! gao that

Wt o . . Lt i e ' - .
vivjlv?j = - vit?dvk and qd_forth

.!1. [

ey R
Therefore, conslder the magnitudes of the type vivJvk .
The gset of these magnitudes form an association mpmeqt tenpor

,dl-- . « . . , : ‘- 1
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of the third rank, Denoting this tensor by IT "and 1its
components by IIiJk gives 1ts moment-funcfiong'by consid—

ering, as previously, the synthetic {physical) definition
of the tensor, For thls purpose consider the -components
of the tensor Il on the axes which are the principal axes
of the tensor &3

v.%vy_ 1 ané so‘forth

1'n'n* 'n

Bt 1 1 &
VTVt Mty vy vv , a Va

As in -the previous case 1t 1s noted that (repeated subscripte
denote summation);

::r . vl = vitil vn = v1n1| virgvi'ti and so for’th__

s ha

.E-ence

T 1y a
v,lav,l = vilivd}ivk tk = IIiJklitjtk
vivpVy! = ITggelyngly - (2,1)
! vlvnvn' = I‘IiJkliank and  so forth

t ' . : !

According to the condition of igotropy all these third
moments should not depend on the directlon cosines -1y "and
né, The equation of the general dependence of the temsor

of the third rank..II. on the vector 1 (invariant equal to
unity) and the scalars r epd 4% reads:

1

Tlygie = 813150+ Bl Ty + Ol Iy + DU T,y (2,3)

where A, B, C, and D are scalar functions of r and ¢,

To determine these scalar functions the values T4 3k
from (2,2) are substituted in (2,1) so that, -for example: -

2 ¥ '
71 71' = A11111J1J1k1k+ BliliIJk"Jt#c‘JIJIiklilwntk"kli,jlitj




NACA IM No, 1Q79 9

or, by making uae of the known properties of the direction
hgosines-__m U T s . e, s ¥

141, = 1, IJktdik = ‘J‘J = 1, and,so forth

vlav‘| = A_+ B+ C+ D

T a‘%i@}iar mamner oL T
. v,V vtl = 0, VaVaVp' = B = vnvlvn = C ‘
vnajt' = D,' vnavnl = 0, flavn' = 0 ete,

the three nongero moment functions are denoted thus!

;?szl'uF-x (r,t); ViV T OV VY

eV = @ (rt)s

Taivyt = Vvt = E (r)t)" (2,3)

i Sl :
For the coefficlients A, B, C, and P 1t results in:

R e O . alien e i
- g Lt Lt — — R S0 A U S
R L oata A k 2q H LR S
R S T T S T L4 1r= e = Q t S o
tee v R EREEE R N - . U SRR O N
S vl et "."'D'= H. :". ST oy RISV g
S '-_1.1- Daewy X LI
Tha.final exprasniontfpr tha conponants mf tht auaoclhtibn
moment tensor of. the; third rank 18: .5 ~q: o oset

Tl = (K- QIQ.—} Hy1y '!'-J..lkrh QQ J.'i.'Jk'*' Ryl + HipIs (2,4)

In place of the toneor of agsoclation moments of the
third order YVon Karman ugses the correlation tensor:
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. ' 1 ' 1
ijk Vivivk
) Te e T Ty = ——df = i (3,%)
(ve) & (v¥)8  (¥5)F

If the correlation functions corresponding to the moment
functione are denoted by the corresponding emall "letters,
gsetting

...£.r_5._§_ q (r't)=3-(-£'—tg-; h (r,t):Eﬁ—r—'—;-)- (2,€)
(v%)® (v3)°® (vE)*®

and 1; 1is replaced by gi/r, the Von Karman formula reads:
k—h — 2q h q .9

4, VECTOR OF ASSOCIATION MOMENT RELATING PRESSURE AND
VELOCITY IN ISOTROPIC FLOW AND CORRESPONDING
MOMENT FUNCTION — DERIVATION OF FUNDAMENTAL

RELATIONS BETWEEN MOMENT FUNCTIONS

The investigation of the problema of the dynamlce of
an isotropic turbdbulent flow requires etill another association
moment relating the pressure p at & point M with the ve-
loclty vector v!' et a nelghboring point, This association
moment 1is represented by the vector pPv! with the projections
Pvi Following the method of the preceding section the
physical components of the vector of the assoclation moment

releting the pressure with the longltudinal and transverse
velocltlies are expressed by the projections:

p'v.l‘ - pvi't,_: PV, "= pvini;
_— ——— (q,1)
PVp = PV3by
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on the condition that, because of the isotropy, these physi-—
cal magnitudes do not depend om 14, n3, and by. The con-—

dition of the general isotropic dependence of the vector p¥

on the unit vector 1 and the scalars r and t 1s evident—
ly reduced to the following: : r

pv,' = P (r,t) Iy B (4,2)

where P(r,t) 4s an arbitrary scalar function of the varia—
bles r,t. The physical meaning of these functions will
become clear if the value PV;' 1is substituted from (4,2)
in (4,1); 1t is:

Pvy' = P(r,t)i,1, = B(r,t)

pv,t = F(r,t)iny, = 0 (4,3)

. va' = P(r.t)libi = 0

Hence the moment function P(r,t) represents the association
moment relating the pressure at point M with the longitudi-
nal veloclty component at point M'; the assoclation moment
of the pressure with the transvers® velocity component 1le
equal to zero, Xlsewhurs it 1s shown that P(r,t) must also
be equal to.zero by reason of the soatinuity. equation.

The foregoing statement rogarding the assoclation moment
of the pressure and velocity nalurally remains true for the
association moments of any scalar fuuction and the velocitles.
This remark:will be of use 1n the following information.
Simple transformations: on the continuity equation,’
which, of course,holds for the turbulent flow, enables cer—
taln relations between the moment functions of the sssocia—
tion moments to he found: : ' :

P(r,t); ®(r,t); &(r,t); EK(r,t); Q(r,t); EH(r,t)

Proceeding from the simplest and keeping the point X
fixed, write the equation of continuity in the neighborhood
of thg point M! (repeated indices denote summation)
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ag =0 (4l4)'

Multiply both sides of the above cquation by the pros;uro
p, which does not depend oa ¢ at point M, and take tho
average; this yields

)
_P:Ll = 0 (4'5)
agd

But, by (4,2)
pvy' = P(r,t)ly = P(r,t) éﬂ = n(r,t)gJ

Therofore, (4,4) ma~ be written thus:
om 4 .
217 + - = 3+ l'_i = 3T+'ro! =
™ E‘J a-é; g"ﬂ' T ™ 0

whore the prime donotes difforentiation with roespect to r.
The solutlon of this sguation 1s

ﬂ:c(t); P=E._(..g.2.
r

From the condition of finiteness of P for r-—0 follovws
c(t) =0, P(r,t)=0
Thue in a homogenoeous "isotropic turbulent flow tho associ-

atlion moment of tho pressure at one point with the velocity
at anothor is oqual to zero, that is,

pvi' = pv,! = pvy,' = 0

or
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. Multiplying both sides of oquation (4,4) by vy,
indenondent of §1, and avernging glves

o 1
_va;_-i= 0 (4.6)
agd

The substitution of tho cxpressions for tho components of
the tensor in torms of tho momont functions ¥ and G Dy
(1,6) first replacing 1, by h/r glvoes -

3
st; O 2 4yty) ST 0L -
or

P -G 3
S5 () ity ;C )2 ok

Wot ing that (prime denotes partial differentiation with
respect to r):

oty at
: (Eigj)"'gia—g"' QJBJ=3§1+51=451
2 F-o_(F-0) &, 30 _ 4, &
ot ra (.ri- r’ d 1 r
1eaves‘after simple reductiomns:
'+ 2 EE,E =0 . ' - {4,7)

4

This 1s the relatien between thg monment funcﬁions--? and
G. With the ald of this relation & 1is revlaced by F
according to the ecuation:

G =7 + % rP! (4,8)
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Next,conslder the moments of the third order. In the
same manner as before, multiplying both sides of equation
(4,4), wvhers the index of surmation J 4s replaced by k,
by viv'j and averaging the results 1in:

v vi:_E - o
btk
Substitution in the'above equatlon of the vaiues of the
componente of IIiJk by (2,4) gives:
d [K-2Q-8H 3 /Q
st (T2 tatgti) T g (R 1)
or
K—223-2 K- 23~ €
B e bt gt (R ¥
q a (: \
I - = 0
\EJ( 9/ ST b ) (4,10)

But, ag nay rondily be seen .

d ot
st (Babybi) = b g (Lt w byby gpfe2t b e st ty=styty

> AT ORI TR WA g
313@'”/‘“0 r*Fa—f}‘rQ fbgt ly

%{@ ‘-i):%@)' bty + 1y ]

5 5k/=§3—§‘“ e (B oo 5 (B)
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Hence eqqaﬁion (4 10) givea

[5_:%‘.—23;“ , (—-%—“) H6) ] tt;

+[23+3 e @) ng=o e

In view of the fact that thig equation must be satisfied
for any ¢;, the expressions 11 brackets are individually
equaled to zeroj hence after simple reductions, the two
equations connscting the moment functions K, Q, and EH
read as follows: ', .

2K— 2H-6Q  _

K'—~ Ht + 0 PR
T
: (4,11)
HI+M = 0
r
The last equation expresses Q 1in terms of Hi
Q=~H8—-X m : i (4 12)
2 ’

Substitution of this value of *Q 1n the firat equatiqﬁ(?Q,ll)
giveqz . a4 -- . ".
(E+ 2H) ' + % (E + 2H) =0

-

x+an=_ﬁl

From the condition of fintteness of the sum K+-ZE for
r-—)O— follova.

i - LR - . .

hence

U X '+;"én =0 o T (4,13)
It is readily seen that equstion (4 13) is satisfied beoause
of the previously proved general property of isotropic flowy
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namely, that the assocliation moments of the scalars at one
"point with the veloclity components at anothor are equal to
goero, Thus:

= 2 2 < t 2 =
X+ ZIE—V.l v.'.l+21rn vl'=v18v.ll+vn-=v.l'+vb8v1 =v v.l'— (4]
This equation may be consldered as equivalent to
2
v .
Bﬁ— y' =0 ; (4,14)

where pv®/2 18 the kinotic energy at poiit M, and v!' the
veloclty at point | L Bearing in mind the statement con—
cerning the associatlion moment of the ‘pressure and velocity,
write:

) ovs
(? + e vt =0 (4,15)

Thus in a homogeneous lsotropic turbulent flow there 1ls no
correlation betwoen the veloclity at one point and the total
mechanical energy at another,

The same holds true for magnltudes meaasured at the same
point in the 1limit as r— 0, According to the foregolng the
isotropy of a turdbulent flow 1s intimately related with the
absence of momentum transport (frictioq). Now 1t is found
thet in an isotroplec flow there can bd no transport of energy.

It should be borne 1n mind that tho obtalned results are
not a trivial consequonce of the purely kinematic symmetry of
isotropic flow (this 1s true, for example, with regard to the
equations;

and eo fortk,which might have been derived by rotating n
through 180°), They were proved by the equation of contlnuity
of the flow (the equations pvy' = 0 and va3v,;! = 0 cannot

be derived from considerations of symmetry)., This equation is
applicable. only to incompressible fluid,
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5, FUNDAMENTAL EQUATION OF THE PROPAGATION OF TURBULENGE
IN AN ISOTBOPIG‘FLOW - DISTURBANCE MOMENT - THEOREM ON TEE
CONSERVATION OF THE DISTURBANGE MOMENT — ANALOGY BETWEEN
THE PROPAGATION OF TURBULENT DISTURBANCES AND

THE PROPAGATION OF HEAT

The next step lg the derlvation of the fundamental dif-
ferential equation of the propagation of turbulent disturb-
ances as recently gilven by Von Karman (1938). With a view
to further investigetion this equation 1s derived in terms of
moment functions and not the correlations by Von Iarman

The continulty equation, as a homogeneous equrtion with
respect to the velocities, affords expressions of the moment
functions only 1n terms- of others of the same order, A re—
lation between the moment functions of different orders is
obtoined by the FNavier-Stokes equations which are written
down for the point M,

vy dvy ' 13 ( 2 o ] )
‘*‘*J‘aig“‘s—*"«xﬂ-v BT v

Multiplying both'sidés by vg', that is, by the veloelty
at point -M', and averaging gives .. :

ovy dvy 1 dp ; ——
co T L TR Ty TR e m YR T (8D

The. component wp! 1is a functlon-of the time and the coordil-
nates: .3, - end not of x3;i then dr use of the equation of

continuity .the. triple product on the left slde ¢an'be written
asl - =

. 37y, «d¥ V4 693 Bvivjvk'
’ v - .V

‘The association moment vivdvk - may ‘be consldered -as =
function of xj 1f the point M! 1s held fixed or as =&
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function of fj 1f the point M 1is held fixed, differenti-
ation with respect to x corresponding to fixing the point
Mt and differentiation with respect to ¢ to fixing the

point M, +that 1s, to a reversal in the direction of differ-

entiatlion; hencse

aViVJVk' _ bvivdvk'
BIJ - btJ
so that
\ ovy 0 — ' _ .
R RS S (5,2

From the foregolng further follows!

——T—-s— = _é_ ! =
Tk bei s k' P RO (5,5)

and

——t——

2
V' Ve vy =T vyv! = V2 vivy! (5,4)

where the symbol Va denotes the Laplaclan wlth respect to
the variable - £ (the sign before the Leplaclan evidently
ghould not vary), After the above transformations eguetion
(§,1) becoues

d ¥ T —
JRALPELE vAvVE! = VY vavg! (%,5)

KRR TRY >

The saume process is repeated by lnterchanging the points M
and M'y that 18, write down the. equation of Navier—Stokes
at the point M!, multiply both sldes by v;, and so forth,
go that lnstead of equ~tion (5,5) there 1is:

YT YU —
MR TR YPRFAF A S Vv (5,6)

But as already noted 1in section 2:



’ A 2% A By v "Linn;_
T A I DA ™ -

henep“(ﬁ,&) changee_to . .

. SRR S B F
. LY

-r'—'T—— . . Lo s Tt .:.-; l.*:-':
- vk' 0 ——— : nil.:='r e
. v — 1 = 57

comiining (6,6) and (5,7) and recalling the previouedw
assumed notation for the components: of the tensors -of the
association moments finally gives:

b¢1k a”._ . . , . .
3t '3, (Tlygpe + Typy) = 20070, (5,8)

The foregoing .complicated system of'equatione can be very
much simplified by expressing sll the components of the
tensors in terms of the corresponding moment functions. . .
Making use of the condition that:.'the equation must hold.for
--any values of .ty as before afforde, however, two .equations

' < w4th three unknown independent moment functione (fof ezampie.

- G, and H). Eliminating one of these (for exampie, T4),-
’afier ebme reductions- whiéh are disregarded. gives the fo}—
1ov1ng equation. e

Jl-ﬂn-r : te e -l'-'_.'._':’.

fratn o~ . . t, _..'.....
T T O - — § A ) zv( +-2 2’-) us e)
SO LI AT

- - Lo t’_' :."‘l.

;n thﬁ Ioregoing the derivatives of. H end“J wish; |
respect to tr were denoted by a prime. the t ime being con—
sldered - ‘astFixed throughout. Here the partial Gertvati1¥e?
notation is used in order to bring out the character of .the
time as an independent variable.

lqnation (5 9) vea given in 1938 by Ven Karman in-terms
of the corfelation functions £ and h 1n the formi.p...»

oLt P )
: N

111

. e . .i.,_ . . . oo
.J * ‘ﬁ' FCECL -" ’: f.' —=" - . * . - "
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3 3 .
2(F ), o5® .s(_g_n 4 ) (a Ay EE)
v + 2(v") G + . 205" -z + ™ (5,10)

The form (f,9) propoeed here is more suitable forfhpplicetion
as wlll be shown later slngce it does not contain the artifiw
clally introduced factor +2, The equation by Von Karman
represents a silngle equation with two uanknown functions h
end f, that 18, .an indeterminate equation, 4s has been
shown by Yon Iarman in his most recent paper,it 1s impossildle
to render the equation determinate by using the same method
but passing to momente of a higher order because the numbder
of the moment or correlation functions increases together
with the number of new equations (this fact has long been
knovn due to the investigations by Friedmann as far back as
192%),

Equatlion (5,9) may be considered as an equation deter—
mining the distribution in epace and time of the assoclation
moment F(r,t) or, what is equivalent, of a magnitude pro-
portional to it namely, the coefficient of correlation
between two longitudinal .velocltles -at:two nelghboring points
at a distanece r from each other at the gsame instant of time,
The first term determines the-local change af F, and the
remalning terme on-‘the leftseide give the convective change
“4n-'F expressed ‘in -toerms of *the function H, and finally the
. ¥ight silde gives .tha molscular diffugiqn of the same magnitude

F,, The indeterminatgneaa ‘of ghe equation 'ds due to the pres-
.enge of the- convective Lerme, uhich reimain uriknéwn and canpot
be expressed in terms of the function F ‘without any addfx
tional assumptions, ZEquatlion (F,9) might have beear directiy
arrived at by averaging the Navier—Stokes equations in spheri-
rcal coordinites,and”"1t would then be.clear that the local and
diffusion terms repreqent simultansously  -an’ averaging of the
fluctuations MM and a fluctuation of the everage vt 1

while the convective term, on account of nonlinearity, deter-—
mines the maan convection of ‘the magnitude v,V 1 but not the

.*-'-———

convection qf the mean VoY 1 = F; _and_p;eciaely nerein lies
the d41fficulty of the probdlem, :

The Yon Karman theory in 1937 in which the effeet of
" moments of thé third- order ..was ‘omitted, that 1s, the con—
!ggtive (inertla) terms, may "be regar&ed only as a theory of
pure diffusion without convection, that is, a motlon with
very small Reynolds numbers, Attempts to coneider the problenm
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of turbulent 1eotrop1e motlqgn for :large Reynolds numbers 1n
Yon Karmen's recent psper (1938) aré as yet in a very primi-
tive stage,: In this connection 1% 1s of great interest to
clarify the general properties qf igotropilc turbdulent .flow
in the general ¢ase of motion with both small and lerge

Reynolde numbere,

Subsequently proof is given of a general theorem of
. turbulent disturbances; namely, a theorem on the conserva—
tioq of the disgturbance moment, With the ald of this theorem
.the problem of the decay of turbdulent dieturbencee can be set-
up and solved, . C

6. THEOREM ON THE CONSERVATION OF TEE DISTURBANCE MOMENT —
n:smunxaucm MOMENT AS A MEASURE .OF, T EE QUANTITY OF
‘ | DISTURBANCE — ANALOGY WITH HEAT
. R PROPAGATION PROBLEMS =

Before proceeding to the derivation of the fundamental
theorem a few remarks concerning the physical significance of
the problem of obtaining the function P¥(r,t) or f(r,t) =

Ly (r,t) should be of interest, Assume that the function

v
CF(r,t) 18 detprmined; then the correlation coefficient

‘f(r t) = vivy'/v® Dbetween the longltudinal velocities will
be determine For r = 0 the correlatlion coefficlent 1is
evidently equal to unity and a complets relation dbetween the
phenomena exists, With increasing r, howeVet ‘the corre-~
lation coefficlent rapldly decreases correeponding to a
_décreasq of the statistical assoclation between the phenomena
at the point’s M and M', Por.Y m=o F and 'f are ‘evidently

equal to zero,

cnngxggrlthezintagrai e LY
'(:‘ . [~ -] " (o] s
| ..I_- - f £(r,t)ar = =1-f ? (r,t) dr - (8,1)
ST b oaes e i'.'. E ‘ va 3 . I

AN i g
This integral may be visualized as a certaln length, derived
with the aid of the correlation coefficient, that character-

21zes the mean dimension of the tegdon of dieturbance or, as
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termed later on, the scale of the turdulence, . .The magnitude

J v°= J/F(0,t) - 1s denoted as the intensity of the turbulence
(1t is the square ropt of the mean square of the velocity),

I1f, at a given inatant, dleturdbances are produced in a
stationary fluid (by passing a screen through it), then under
the effect of viscosity and convection these dlsturbances
will be propagated in space and dissipatsd on account of the
viscoslty. It can readlly bde.seen that the intensity will
decrease to zero and the scale of turbulence will expand aB a
result of the diffusion and convection, The question naturally
ariges whether or not a certain quantity will be conserved
with respect to time, It wlill be shown that under very gen-
eral essumptione such a magnitude that remaing constant in
time exlsts and may serve as a measure of the quantity of
dieturbance externally appllied to the fluild, To prove thils
both sides of equation (F,9) are multiplied by r where k
for the present is assumed to be positive and integrated with
respect to r ©between the limits of zero and infinity, Then

=]

atf:rr dr+af-§§rﬂ¢r+8 ark-? ap -

oot

=2v(j Frdr+4‘f oF lk—l dr) &5 2)
ar= . '

Integrating (formally) by parts gives
o - - o

3 © . y
ﬁ rrfar = - 2 (Hrk)o + 3k f ErE? ar - 8 f B ar

o ° oo
+ 2V (%— r > ~2vk QF K1 4r By Jr oF k-1 4.
o Oor o Or
( - .
AN | k-l
= - 2 (Hrk) + (k- 8) Er dr + 2V ar k)
: ..br °
._‘l'. . ':".:":..' ) "o
we , = 3D (k-4)LJr 5 h-l dr - (s, 33
or

0
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As r increases to infinity the functions ¥, H, df/dr
‘whlgh are proportional-te the. gorrelatien coefficlents, must
rapidly decrease to sero, For small r" the function F,
being an even functlion, has the form

fre e oasrouw adio ok

8
- r
o, TR TER e 0 T P TETSR
. . - \.
r
and, therefore, for |mg11“gr3 v S tamae
I b e r I A a. .
RSP B o s

B!@qié??y’the function H(r,t) is expan&ed in a seriess
B(x,t) = H(0, ) + E1(0, %) T+ nngp;y)r=4-% EW1(0,8)r3 + ..,

l‘r' o " |-.- . - . .. ™ N « oy ~ P

TR

I; is noted that on account of the'isotropy, ‘on-reversing the
direction.of -1 %o 1,. and passting bo-bhe limit as r -0,

the ‘valub’'of H(0,t) does not changd? ‘but -

- —_—— v 4 EwT| .
% H(O;-%)-v 8y ¥ = ¢ B¢y} «oflog & v 3-!; 1
N t 9. n 1, {psqnzeci p sl lr->a
) A 1 L
A twdn Lot e e Tak 22 f“f.gﬂ’:';: .
SRR T R TIELEY w2
- ‘s "o 7 4t R ST S
aniy;iﬂ#idt&ro . H(O,t) = 0, = "= o _rgﬂq "ﬂ~" T if

By following the same reasoning it is found that .on

avdount'oR 0tkhe ‘feotropy all cdefficienta of- the qufei 9P to
~E9{0, ﬁya%inalusive mus ¢ Becdme zefd* “ﬁe§¢e ror smail ft:f
TR . - . « 4
SR FUEPTR I N I t"'.'._.'d:" wmy - B -'-'-l"T‘- ' - g
"“-“‘ﬂfff’&')-"ﬁ’r:" srFu L L Tong I. aolad

. Returning to equatiogy 96 35 1t‘1q dscumed that the rate
‘of ‘decrease of the 'uncf’g‘ona F, and “¢F/dr as r >
exceeds the rate of increass of r* a8 r »>o and k = 4,
From (£,3)-for  k =.:4:1:5okloMes~os -~ i 1 uwdil .2 P

ALY L B eduesoidva e w3 29 wienr war uts oy
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4 r(r.t)r‘aQ'-_o o o (6,4)

at
0

in other words for all values of ¢

N = L/‘I(r.t):f&; = aonstant = Jr I(r;o)r‘dr\;‘ho (6,5)
o )

The magnitude M which rethains gopgtapt in time not—
wvithetanding the diffusion of the disturdbance is termed
"digturbance moment" and serves as a measure for the turdu—
lent disturbance. In the same.vay as in the phenomenen of
heat diffusion where the total quantity of heat initially
imparted to the fluid remains the same, the integral (6,5)
reprgsents a certain measure of the guantity of disturbanoo
wvhich remains the same notwithstanding the dissipation of
the 1ntensity of the turbulence in the flow,

)]
et It is emphasisod that formula (6 5) vas derived ror the
case of homogeneous, isotropic turbulence from squation (5,9)
in its general form without rejecting the convective term,
that is, from.the indeterminate equation. Prodbably in the
case of nonhomogeneous and nonisbdtropile turbulence there
zxings an analogy, as yet unknown, corresponding to foraula
6,6).

Thorefore. the following general theorem. — the: dintgrb-
ance moment in g homogeneous, isotroplg turbulent flos
remeins constant and is determined by the initial disturhanco
imparted to the flnid In what follows, this theorem is
termed “the ihnnznn ihe conservatien of the disturbance

moment."

T

The forpgoing cqnation of the conlervation of the dis—
turbaneo momgnt may he roadily interpreted as follows: Con—
sider, together with the earlier introduced scale of turbu—
lence I determined by the integral (6, 1), another conven—
tional scale Ls given by. the:-equation

8 . [
.L.f,q'JC'f(r.t)r‘dr

L N L T : 0 : . ) v
wvhere Ls 1like L 4is a certain statistically derived length
characterising the scale of the turbulence, The introduction

(6,8)
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of this “ecale“ would _be very convenient since from equation
(6 5) there uquld then immediately follow:

;;_L.sl- pqnstant K ..(6.7)

: = Ve -

that 1s, the produot of the aguars of ihn intnnniix ni ihn
tgrbulence by the fifth power of fhe ngnln las a

itude, a very clear and simple expression of the theorem
of the aonlervation of the disturbance moment

It may be observed that the theorem’ of “Whe ‘éonservation
of the disturbance moment serves as an interesting analogy
of the 'known fact of the comservation of the total quantiity
of heat during heat propagation in a fluid, This considera-
tion 1s essential for the subssquent etudy and .ie briefly” -
explained, BRecalling that the lLaplaclan, 1n an n—dimensional
space for a functlon depending only on the distance, 1s deter—
mined by the rormule.

va =aal‘+n—1'b.__£
(n) ora r or

- ) O . .-1,__]' -

1t is readlly seen that equation (F,9) may be interpreted

as the equation of the propagatlon of heat in g fluid 1in
five—dimenalonal space, the moment function F(r,t) Deing
interpreted as a tepperasture and the '‘second term on the left
repreeenting the convectlve varlation of ihe temperatyre I
(1te transport) expressed through the function HE, With this
~fonterpretation. the digturbance ‘'moment .appears -no .qther :than
the iquantity -of heat in a five—dimgnsional space-.sand thies -
quantity naturally remains constant, The foregoing analogzy
between the propagation ¢of turdulent disturbances in three-
dimensional space and the.propagation of heat in five-
dimensional space will be of use later on,

..7. DRCAY OF TURBULENCE. —.CASE OF .DLSTURBAKCE, .OENTERS -
. LY . . v ' T t
OF THE "SOURCE® TYPE - LAWS OF DEOAY OF |,

TURBULENCE OF A GIVEN IFITIAL INTENSITY AND SOALE

-
o - '

,It has been shown that the fundamental equation by Von
Karman 1s an indeterminate equation and for this reason the




26 NACA TM No, 1079

“problem of the propagation of turbulence still’ remains,es-

gentially undetermified, It is possible, nevertheless, -te
derive several very lmportant concluaions from thls equation,

Von Kérm;n'and Howarth (reference 2) have solved the
problem of the decay of the turbulence intensity behind
centers of disturbance of only the point source type and
leave the problem far from completely solved. Thaeir !
method stlll leaves the exponent in the law of the decroase
of the turbulence intensity undetermined, that is, only the
character of the solution is given, - Their computation pro-

cedure 1a bdriefly describded,

In equation (5,10) r is equated to zero and since
for small ‘'valueas of r the function h 1is of the order of
r8 (gee (6, 4))equation (5,10) then becomes

) . ;
dv?d ooT o°f . a bf) - .

—u 2P ——— = me— = 10vf Wy=B ”.1
dt or® T Bar r=o o (7,1)

If, according to Taylor, the function g(r,t) is approxi-
mately replaced by the parabdola .

&lr,t) = g(o,t)+-3 g"(0,8)r =1 + %-go“fa

ot e :

' and the abscissa A found of the intersection of this parabola

with the axie .r, - that 1s,:, A determined by the formula
A w2 T

n
g

« 2T

this magnitude may DPe considbred-as an approximate character—
latic of the scale of turbulence I.s strictly given Dby the
equation: -~ ; o7 T S

A e e e e N .
Ls = JP g(r, t)ar
T B I ® .- :

nie

- -
~ . -1 P
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Pageing from the function g to the function f and
- ‘remérbering tkat dy (4,7) . . .. - .

£ a\! r(f1— g1)=— £+
204 2 -.--f) < engp 2t g') g
. . Lo . &
.. : . Coon
et en
=en 4 g i€ SI-g_

r ra3

Sy L . -

and for r = O

. :l' . . . '

2N + g(fon - son) - (fol - gon)a 0

thet 1s, e R

L . » . . u l " -
f0 = 2 so
results in 'i:_- ) !
- -] .1 '
A= - (7,2)
-
Bquation (7,1) takes the form,pf the well—known Taylor
equation: .
d;s ) v '
— e 1OV — 7,93
Tt . (7,3)

where A or the magnitude f_ " associated with it remain
undetermined fuuctioqg of time,
+,-") Furthermore, returiing to éqtiatled (F,10), Von Xarman
rejects the terms containing the fun&étion h and shows
that thls corresponds to the case of gsmell Reynolds number
" 'of ‘tlre turbulent flow.(for example, number- v/ "¥s A/v),
Eliminating v*. from the: eguation (5,10) *thus simplified
with the aid of (7,1), Von Kerman obtaing the equation:
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( - -; 5f ) - (7,4)

Seeking to obtain a particular 1ntegrél of this equation in

the form of a function of a single variable X = Yon
- I' . . ”t
Karman reducee equation (7,4) to the form
s (24 X) et — B2 Nf =0 (-}5)
X 4 o '

vhere the primes denote the derivatives with respect to ¥
and, therefore, " ig a constant which Von Kédrmén '‘denoctes
by —a. This conagant remalns an undetermined constant to
the end. The solution for f£(X) 4s given in the form:

a8 _ 8 _ 8
4 a8

1
78 X
£7(x) = 2% % 0 ° Hma-'s;"%(xé:) (7:6)

vhere M repressnts the:kpqwq hypergeometric function.1

Equation (7,1) becomes

[ "

a”s —
-d—v--=-10v C; >L --—10-!;-a. (7,7)

dt
- =0
It 1s readlly integrated and gives the result

1 1 sa '
el e

P

:lihiftakea an@-iétnbn. Course .in modern analysis.’

e,
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where the ‘subdecript ©O- denotes the initial valge, TFrom
‘éeqiation (7,23) - - ce- . -

]
= .b_f :—]:..f' 0 =__g_
:(Bra vt X (o) vt

it also follows that
» )
A = = t (7,9)

Thus for the paréicuiar solution of £(%) = f(—ll;>, which
q@t

corresponds to the analogy of a heat source disturbance,

the problem remains unsolved since a 1s unknown, Von-
Karman mentions the fact that the value a = 1/5 corresponds
to the Taylor theory,

The present au%-.h.or procooded in a manner differing from
that of Von Kdrmdn's and solved the problem, not only for
the ®polnt source" diat algo for the case of any initial dis-—
turbanca.l In place of the correlation functions f and

h consider the previdusly introduced moment functions F
.and H, that 1s, start not from equation (4,10) but from
equation (5,9). . :

Following ¥on Iérméh, the convective term 1s rejected
and: the equation
1]

& ca ﬁz = 27 D_E + ﬁ,b— RPN - .3_,(7.10)
L ror/, . .. . _

s

1s solved corresponding to pure (molecular) diffusive dis-
turbances, This equaetion 1ls regarded as the equation of the

propagation of "hegt in five-dimengional spsecs, o

"Beglnning with ‘the.case of a source the particular
solutlion of equation (7 10) in the case of a source in flve—

" e . cm weatawr B i g mee o om -

1Recent1y the same problem of a source eonstituted the
subject 06f a dissertatibn’for & doctor'!s-degree’ by M, D,
. M E1lionehikov whosd method differs from the authorits methdl
(Rep, of the Acad, of Sei,, 1939,)
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dimensiongl space is well khoiﬁ;xz The solution 18 of the
form: .o .
. '-3
- r . -

- e—p—

e 8Vt

(/rey

F(r,t) = constant (7,11)

constant

(Jot)®

TO(t) = 7(0,8) = (7,12)

Substitﬂging-fhe value of voi(t) for eny t = t ¥ 0 and

and denoting it by ;oa the equation reads.
R
l = 1 _t_ 1 ) a ) et (7 13
q/—?i q/ Toa (t°> v - - . .' )

Comparing this result with the Von Karman formula (7,8) 1t
ig seen ‘that the constant o 1ntroduced by him as an unknown
has a completely defined value, namely, ’

Q= (7,14)

» =

" Finally the constant entering“gquations (?,11) and (7,12) can

be strictly determined, 'For this purpose the disturbance
moment M 1g found by the egquation

' @ ] ra .

M= Jr P(r,t)r*ar = constant o 80t rédr

0o - . LR 0 (‘/-\-’—t)s‘

P A - -

1a. Vebster, Pantisl Differential Equatione of Mathemati—
cal. Phy'sicse,... (Heference is to Ruseian translation of boog.)

1 L]
LR ]
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The integral 1s readily evaluated and-after simple reductions

- . a s & - -
P LI ot ey, Dt n s H )

.. r. . . s

caatd . . e . ‘.
congtant = M .-
48~/2ﬂ. .

vhence R S o T

F2(t) = 1 (7.15)

M
o e

Making use of the bbtained value of the constant dy equation
(6,1) gives aleo for the case of a point sourece disturbance
the law of varlaetlion of the scale of:turbulence L analogous
to equation (7,9) for the scale according to Taylor:

[~ -]

[ ] -]
r
L gf .!SE_.-._ﬂ_ar =f e 8UF 4dr = Jenvt (7. 16)
J ve . \
S 29 Y . ’

ewis T R

The above equations give a complete solution of the problem
of a source of given "strength®™ M,

If, according to Taylor, the concept of isotropy 1is
generallszed to thq case of.a uniforp flow with-average yelocity
U (for éxambple, VYehind a acéreenr in the working portion of a
wind tunnel) and the obtained formulas applied.in a Galilean

{4y8tem moving with velocity U then follewing in this menner
behind the decay of the turbulence in the reglon of the fluid
moving with veloclty U, the result will be X = T(t - to)

L1f . .X:.ls computed .along the floy:from a certain point :canre-
.anﬂing to the instant , t .= .t,;.;Bquation (7,13) .then.hecomes:

neto o e L AL L g s Loyt e

L. 12 (1. XN 7T T
v 7o ST Ut ’

.
by

As 18 known, Taylor gave a linear law,vhich 1s sufficlently
well confirmed by experiment; whilé “our exponent differs from
unlty, The reason for this probadbly lies in the fact that
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the disturbances in the tests are not of the source type
but initial disturbances of finite magnitude and also in
the fact that pure diffusion without convection were
consldered.

The problem of the decay of the intensity of the
turbulent disturbances for a given initial distridbution
of the moment function satisfyling only the condition .of
finite disturbance reduces to the integration of equation
(7,10) for the initial condition

t =0, T=Fr) (7,18)

Turning to the analogy with the propagation of heat in a -
five—dimensional space,the general solution of the problem
-1la written in the form:

F(r t)
b5
(2-/2 )SI[[ffr (“"“3'“’3-“4-“5“ e mdaq...d.a.s (7,19)
v
were .

1 - - - - . N - -

5. T ' ]

P "(x1"a'.1) "'(xa"‘ag) +(X3-q.¢) +...+(Xp-a.5)

1
L3

r=xi +){.§ '!".ot x; ' b (7 20)

."“_-. . __.\__- X,

. { - r - J.- i “ . " . b s
UL

Pags ing - to epherical coordinatos the choice 'for the eloment

‘ofredlume ‘may ihé .an-infinitely ‘tEin spherical ldyer of volume
equal to the product of the area of a five—dimensional sphere
of radius p Dby dpy that ie,

P wmy L amae "—"'—"

. "!"*

8 .3 4
z T P dp

.nsﬁg£i558 (?7,19) then becomes
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-t - -P2_ .
- r(rﬁt)" . ;/i Io(rupnt)P‘ e evt dp. (7,21)

: 4e./"(./—>

where ¥ (r.p s) denotes the average value 6f the function

T, on a sphere of ‘radius P described about the point at

distance r from the origin of coordinates. Passing to the
limit when r -0 it 1is noted that on account of the assumed
initial distridbution of F as a function only of the dis=
tance r

.

CT Y
"™

Tp = Pogp)
whence finally
. 3
- P

1 1 7. (p)e- %¥Pp%ap  (7,22)
48~/; (a/v_t)s'[ °

This simple equation gdetermines the law of decay of the
turbulence 1ntensity €iven by its initial distribution,

vt )., 7(0,t) =

The above equation changes to equation (7,15) if, re—
calling the definition ¢f source, the functioci T (p) 1s
chosen thust c

- Io(p);? 0O p>0
LI . . : -I — B .--‘ r ( p) - m p - o
. o :

Y
v

oo

[ L h1,'l -....: _.: .

f To(p)p‘dp - i
: L0 "?" o S .
It 18 of lntereqt to note that For large t +the asymptotis
form of va(t) for all initjal distributions having the
same distuibance agrees with:the diletribution for the source
of the strength (moment),a property analogous to the known
property of the distridution of heat.
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It 1s seen that the initial dietribution of the dis—
turbance affects the law of. decay of the turdulence. 1In
the case of a source there existed an infinitely large
initial intensity for an infinitely small initial scale
and given strength. 1In order to evaluate, at least quali-
tatively, the effect of the initial scale consider the
following initial Adistridution (etepped Adistribution):

i‘o(r)-'- ;oa 0<r <L,
(7,23)

To(r) = 0 r>L

In this simple case (7,22) affords

T%s) &

- B8 8vt
Vo Jf o 4
= ; /—=\8

The integral ie eaéily computed and givell:'

- _ 8
o) = o [2./7 gre (2ol
15,\/: [8 " : (q/ 8vt

8ot |, L ®
—% Lo (1 +11—2-9->] (7,24)
8vt vt

Lo

i

may be taken into account by developing the function Erf
into a serles. After simple reductions it. approximates to:

The effect of the initial scale for small values of

‘Erfs here denotes the well known "erros function®
' . s g -

2 -

m:‘-fs=——fa © ds

AR
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Hoting that in the given oase

oo . .
.- HY s I ‘ 1 - 8. ‘s .
M= j' .IG.(r)r4 dr = -5- '.o "LO
- ) . ° . . . L) e » v

equation-(7 16) may, ?or'convenienco of compering the
Ya'ined equation with the equation .for 'tho sonrne (I = 0)

of the same strength M, ©be rewritten as (7,25): °
-— . ‘- . ’ i - H . . L 8 : F
v3(t) = (} - L —Jl‘> . (7,26)
28 »7T '

48 /2n(,/ot)®

The relative correction 1s seen to be proportional to the
square of the initial ecale.

A check of the correctness of all the obtained equations
as well as of the fundamental theorem of the conservation of
the disturbance moment on the basis of existing experimental
data 1s, unfortunately, extremely difficult., The tests, which
in the near future will be set up in the CAHI laboratories
under the direction of E. M, Mingky, willl serve further te

develop the present concepts in this interesting fleld of
turdbulent motion,

Translation by 8, Reiss,
National Advisory Oommittae
for Aeronautics.
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